首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11904篇
  免费   1627篇
  国内免费   2004篇
化学   9930篇
晶体学   125篇
力学   1976篇
综合类   111篇
数学   606篇
物理学   2787篇
  2024年   25篇
  2023年   164篇
  2022年   359篇
  2021年   495篇
  2020年   761篇
  2019年   592篇
  2018年   413篇
  2017年   441篇
  2016年   520篇
  2015年   507篇
  2014年   610篇
  2013年   919篇
  2012年   768篇
  2011年   673篇
  2010年   478篇
  2009年   615篇
  2008年   650篇
  2007年   686篇
  2006年   683篇
  2005年   611篇
  2004年   590篇
  2003年   520篇
  2002年   398篇
  2001年   328篇
  2000年   319篇
  1999年   246篇
  1998年   242篇
  1997年   261篇
  1996年   226篇
  1995年   241篇
  1994年   202篇
  1993年   176篇
  1992年   172篇
  1991年   122篇
  1990年   110篇
  1989年   63篇
  1988年   57篇
  1987年   60篇
  1986年   35篇
  1985年   35篇
  1984年   24篇
  1983年   15篇
  1982年   24篇
  1981年   18篇
  1980年   20篇
  1979年   20篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
This review is mainly focused on the optoelectronic properties of diamond-based one-dimensional-metal-oxide heterojunction. First, we briefly introduce the research progress on one-dimensional (1D)-metal-oxide heterojunctions and the features of the p-type boron-doped diamond (BDD) film; then, we discuss the use of three oxide types (ZnO, TiO2 and WO3) in diamond-based-1D-metal-oxide heterojunctions, including fabrication, epitaxial growth, photocatalytic properties, electrical transport behavior and negative differential resistance behavior, especially at higher temperatures. Finally, we discuss the challenges and future trends in this research area. The discussed results of about 10 years’ research on high-performance diamond-based heterojunctions will contribute to the further development of photoelectric nano-devices for high-temperature and high-power applications.  相似文献   
42.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   
43.
This article aims to provide a survey of biological applications of Schiff base macrocycles and their metal complexes, with emphasis given to the synthesis of the compounds and to their uses as antibacterial and antifungal agents. The literature on the subject, published during the 2005–2019 period, is shortly reviewed. This is an informed report collecting information on the addressed topic in a concise systematic way, and can be expected to be useful as a fast literature catalogue for researchers working on this and related domains.  相似文献   
44.
For the preparation of zinc organometallics bearing highly sensitive functional groups such as ketones, aldehydes or nitro groups, especially mild halogen–zinc exchange reagents have proven to be of great potential. In this Minireview, the latest research in the area of the halogen–zinc exchange reaction is reported, with a special focus lying on novel dialkylzinc reagents complexed with lithium alkoxides. Additionally, the preparation and application of organofluorine zinc reagents and transition-metal-catalyzed halogen–zinc exchange reactions are reviewed.  相似文献   
45.
Novel lithium–lanthanide (Ln: cerium and praseodymium) bimetallic coordination polymers with formulas C10H2LnLiO8 (Ln: Ce (CeLipma) and Pr (PrLipma)) and C10H3CeO8 (Cepma) were prepared through a simple hydrothermal method. The three compounds were characterized by means of FTIR spectroscopy, X-ray diffraction, single-crystal X-ray diffraction, SEM, TEM, and X-ray photoelectron spectroscopy. The results of structural refinement show that they belong to triclinic symmetry and P space group with cerium (or praseodymium) and lithium cations, forming coordination bonds to oxygen atoms from different pyromellitic acid molecules, and leading to the construction of 3D structures. It is interesting to note that the frameworks exclude any coordination water and lattice water. As an electrode material for lithium-ion batteries, CeLipma exhibits a maximum capacity of 800.5 mAh g−1 and a retention of 91.4 % after 50 cycles at a current density of 100 mA g−1. The favorable electrochemical properties of the lanthanide coordination polymers show potential application prospects in the field of electrode materials.  相似文献   
46.
The “disappearing polymorph” phenomenon is well established in organic solids, and has had a profound effect in pharmaceutical materials science. The first example of this effect in metal-containing systems in general, and in coordination-network solids in particular, is here reported. Specifically, attempts to mechanochemically synthesize a known interpenetrated diamondoid (dia) mercury(II) imidazolate metal–organic framework (MOF) yielded a novel, more stable polymorph based on square-grid (sql) layers. Simultaneously, the dia-form was found to be highly elusive, observed only as a short-lived intermediate in monitoring solvent-free synthesis and not at all from solution. The destabilization of a dense dia-framework relative to a lower dimensionality one is in contrast to the behavior of other imidazolate MOFs, with periodic density functional theory (DFT) calculations showing that it arises from weak interactions, including structure-stabilizing agostic C−H⋅⋅⋅Hg contacts. While providing a new link between MOFs and crystal engineering of organic solids, these findings highlight a possible role for agostic interactions in directing topology and stability of MOF polymorphs.  相似文献   
47.
Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations.  相似文献   
48.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
49.
A new uranyl containing metal–organic framework, RPL-1 : [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL - 1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Å and is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.  相似文献   
50.
This review summarizes the use of photoreactions that replace conventional heating processes for growing oxide thin films from chemical solutions. In particular, this review outlines key variables in photoreactions that affect epitaxial and polycrystalline thin film growth, including precursor materials, laser wavelength, laser fluence, and carbon. In addition, the features of the photoreaction process that can be controlled at a low temperature by oxygen non-stoichiometry are examined. Likewise, functions that are neither achieved by developing a gradient structure nor controlled by a thermal equilibrium reaction are detailed. Two new concepts are presented, known as photoreaction of nanoparticles (PRNP) and photoreaction of a hybrid solutions (PRHS), in which crystal nuclei are pre-dispersed in a metal–organic compound film. This method has successfully produced flexible phosphor films used as resistor or thermistor electronic components. Finally, thin film growth using different light sources such as flash lamps and femtosecond lasers (fs) is explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号